gcp.dataplex.Task
Explore with Pulumi AI
A Dataplex task represents the work that you want Dataplex to do on a schedule. It encapsulates code, parameters, and the schedule.
To get more information about Task, see:
- API documentation
- How-to Guides
Example Usage
Dataplex Task Basic
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
const project = gcp.organizations.getProject({});
const example = new gcp.dataplex.Lake("example", {
    name: "tf-test-lake_72490",
    location: "us-central1",
    project: "my-project-name",
});
const exampleTask = new gcp.dataplex.Task("example", {
    taskId: "tf-test-task_89605",
    location: "us-central1",
    lake: example.name,
    description: "Test Task Basic",
    displayName: "task-basic",
    labels: {
        count: "3",
    },
    triggerSpec: {
        type: "RECURRING",
        disabled: false,
        maxRetries: 3,
        startTime: "2023-10-02T15:01:23Z",
        schedule: "1 * * * *",
    },
    executionSpec: {
        serviceAccount: project.then(project => `${project.number}-compute@developer.gserviceaccount.com`),
        project: "my-project-name",
        maxJobExecutionLifetime: "100s",
        kmsKey: "234jn2kjn42k3n423",
    },
    spark: {
        pythonScriptFile: "gs://dataproc-examples/pyspark/hello-world/hello-world.py",
    },
    project: "my-project-name",
});
import pulumi
import pulumi_gcp as gcp
project = gcp.organizations.get_project()
example = gcp.dataplex.Lake("example",
    name="tf-test-lake_72490",
    location="us-central1",
    project="my-project-name")
example_task = gcp.dataplex.Task("example",
    task_id="tf-test-task_89605",
    location="us-central1",
    lake=example.name,
    description="Test Task Basic",
    display_name="task-basic",
    labels={
        "count": "3",
    },
    trigger_spec={
        "type": "RECURRING",
        "disabled": False,
        "max_retries": 3,
        "start_time": "2023-10-02T15:01:23Z",
        "schedule": "1 * * * *",
    },
    execution_spec={
        "service_account": f"{project.number}-compute@developer.gserviceaccount.com",
        "project": "my-project-name",
        "max_job_execution_lifetime": "100s",
        "kms_key": "234jn2kjn42k3n423",
    },
    spark={
        "python_script_file": "gs://dataproc-examples/pyspark/hello-world/hello-world.py",
    },
    project="my-project-name")
package main
import (
	"fmt"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataplex"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
		if err != nil {
			return err
		}
		example, err := dataplex.NewLake(ctx, "example", &dataplex.LakeArgs{
			Name:     pulumi.String("tf-test-lake_72490"),
			Location: pulumi.String("us-central1"),
			Project:  pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		_, err = dataplex.NewTask(ctx, "example", &dataplex.TaskArgs{
			TaskId:      pulumi.String("tf-test-task_89605"),
			Location:    pulumi.String("us-central1"),
			Lake:        example.Name,
			Description: pulumi.String("Test Task Basic"),
			DisplayName: pulumi.String("task-basic"),
			Labels: pulumi.StringMap{
				"count": pulumi.String("3"),
			},
			TriggerSpec: &dataplex.TaskTriggerSpecArgs{
				Type:       pulumi.String("RECURRING"),
				Disabled:   pulumi.Bool(false),
				MaxRetries: pulumi.Int(3),
				StartTime:  pulumi.String("2023-10-02T15:01:23Z"),
				Schedule:   pulumi.String("1 * * * *"),
			},
			ExecutionSpec: &dataplex.TaskExecutionSpecArgs{
				ServiceAccount:          pulumi.Sprintf("%v-compute@developer.gserviceaccount.com", project.Number),
				Project:                 pulumi.String("my-project-name"),
				MaxJobExecutionLifetime: pulumi.String("100s"),
				KmsKey:                  pulumi.String("234jn2kjn42k3n423"),
			},
			Spark: &dataplex.TaskSparkArgs{
				PythonScriptFile: pulumi.String("gs://dataproc-examples/pyspark/hello-world/hello-world.py"),
			},
			Project: pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() => 
{
    var project = Gcp.Organizations.GetProject.Invoke();
    var example = new Gcp.DataPlex.Lake("example", new()
    {
        Name = "tf-test-lake_72490",
        Location = "us-central1",
        Project = "my-project-name",
    });
    var exampleTask = new Gcp.DataPlex.Task("example", new()
    {
        TaskId = "tf-test-task_89605",
        Location = "us-central1",
        Lake = example.Name,
        Description = "Test Task Basic",
        DisplayName = "task-basic",
        Labels = 
        {
            { "count", "3" },
        },
        TriggerSpec = new Gcp.DataPlex.Inputs.TaskTriggerSpecArgs
        {
            Type = "RECURRING",
            Disabled = false,
            MaxRetries = 3,
            StartTime = "2023-10-02T15:01:23Z",
            Schedule = "1 * * * *",
        },
        ExecutionSpec = new Gcp.DataPlex.Inputs.TaskExecutionSpecArgs
        {
            ServiceAccount = $"{project.Apply(getProjectResult => getProjectResult.Number)}-compute@developer.gserviceaccount.com",
            Project = "my-project-name",
            MaxJobExecutionLifetime = "100s",
            KmsKey = "234jn2kjn42k3n423",
        },
        Spark = new Gcp.DataPlex.Inputs.TaskSparkArgs
        {
            PythonScriptFile = "gs://dataproc-examples/pyspark/hello-world/hello-world.py",
        },
        Project = "my-project-name",
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.dataplex.Lake;
import com.pulumi.gcp.dataplex.LakeArgs;
import com.pulumi.gcp.dataplex.Task;
import com.pulumi.gcp.dataplex.TaskArgs;
import com.pulumi.gcp.dataplex.inputs.TaskTriggerSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskExecutionSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        final var project = OrganizationsFunctions.getProject();
        var example = new Lake("example", LakeArgs.builder()
            .name("tf-test-lake_72490")
            .location("us-central1")
            .project("my-project-name")
            .build());
        var exampleTask = new Task("exampleTask", TaskArgs.builder()
            .taskId("tf-test-task_89605")
            .location("us-central1")
            .lake(example.name())
            .description("Test Task Basic")
            .displayName("task-basic")
            .labels(Map.of("count", "3"))
            .triggerSpec(TaskTriggerSpecArgs.builder()
                .type("RECURRING")
                .disabled(false)
                .maxRetries(3)
                .startTime("2023-10-02T15:01:23Z")
                .schedule("1 * * * *")
                .build())
            .executionSpec(TaskExecutionSpecArgs.builder()
                .serviceAccount(String.format("%s-compute@developer.gserviceaccount.com", project.applyValue(getProjectResult -> getProjectResult.number())))
                .project("my-project-name")
                .maxJobExecutionLifetime("100s")
                .kmsKey("234jn2kjn42k3n423")
                .build())
            .spark(TaskSparkArgs.builder()
                .pythonScriptFile("gs://dataproc-examples/pyspark/hello-world/hello-world.py")
                .build())
            .project("my-project-name")
            .build());
    }
}
resources:
  example:
    type: gcp:dataplex:Lake
    properties:
      name: tf-test-lake_72490
      location: us-central1
      project: my-project-name
  exampleTask:
    type: gcp:dataplex:Task
    name: example
    properties:
      taskId: tf-test-task_89605
      location: us-central1
      lake: ${example.name}
      description: Test Task Basic
      displayName: task-basic
      labels:
        count: '3'
      triggerSpec:
        type: RECURRING
        disabled: false
        maxRetries: 3
        startTime: 2023-10-02T15:01:23Z
        schedule: 1 * * * *
      executionSpec:
        serviceAccount: ${project.number}-compute@developer.gserviceaccount.com
        project: my-project-name
        maxJobExecutionLifetime: 100s
        kmsKey: 234jn2kjn42k3n423
      spark:
        pythonScriptFile: gs://dataproc-examples/pyspark/hello-world/hello-world.py
      project: my-project-name
variables:
  project:
    fn::invoke:
      function: gcp:organizations:getProject
      arguments: {}
Dataplex Task Spark
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
// VPC network
const _default = new gcp.compute.Network("default", {
    name: "tf-test-workstation-cluster_56730",
    autoCreateSubnetworks: true,
});
const project = gcp.organizations.getProject({});
const exampleSpark = new gcp.dataplex.Lake("example_spark", {
    name: "tf-test-lake_95154",
    location: "us-central1",
    project: "my-project-name",
});
const exampleSparkTask = new gcp.dataplex.Task("example_spark", {
    taskId: "tf-test-task_64336",
    location: "us-central1",
    lake: exampleSpark.name,
    triggerSpec: {
        type: "ON_DEMAND",
    },
    description: "task-spark-terraform",
    executionSpec: {
        serviceAccount: project.then(project => `${project.number}-compute@developer.gserviceaccount.com`),
        args: {
            TASK_ARGS: "--output_location,gs://spark-job/task-result, --output_format, json",
        },
    },
    spark: {
        infrastructureSpec: {
            batch: {
                executorsCount: 2,
                maxExecutorsCount: 100,
            },
            containerImage: {
                image: "test-image",
                javaJars: ["test-java-jars.jar"],
                pythonPackages: ["gs://bucket-name/my/path/to/lib.tar.gz"],
                properties: {
                    name: "wrench",
                    mass: "1.3kg",
                    count: "3",
                },
            },
            vpcNetwork: {
                networkTags: ["test-network-tag"],
                subNetwork: _default.id,
            },
        },
        fileUris: ["gs://terrafrom-test/test.csv"],
        archiveUris: ["gs://terraform-test/test.csv"],
        sqlScript: "show databases",
    },
    project: "my-project-name",
});
import pulumi
import pulumi_gcp as gcp
# VPC network
default = gcp.compute.Network("default",
    name="tf-test-workstation-cluster_56730",
    auto_create_subnetworks=True)
project = gcp.organizations.get_project()
example_spark = gcp.dataplex.Lake("example_spark",
    name="tf-test-lake_95154",
    location="us-central1",
    project="my-project-name")
example_spark_task = gcp.dataplex.Task("example_spark",
    task_id="tf-test-task_64336",
    location="us-central1",
    lake=example_spark.name,
    trigger_spec={
        "type": "ON_DEMAND",
    },
    description="task-spark-terraform",
    execution_spec={
        "service_account": f"{project.number}-compute@developer.gserviceaccount.com",
        "args": {
            "TASK_ARGS": "--output_location,gs://spark-job/task-result, --output_format, json",
        },
    },
    spark={
        "infrastructure_spec": {
            "batch": {
                "executors_count": 2,
                "max_executors_count": 100,
            },
            "container_image": {
                "image": "test-image",
                "java_jars": ["test-java-jars.jar"],
                "python_packages": ["gs://bucket-name/my/path/to/lib.tar.gz"],
                "properties": {
                    "name": "wrench",
                    "mass": "1.3kg",
                    "count": "3",
                },
            },
            "vpc_network": {
                "network_tags": ["test-network-tag"],
                "sub_network": default.id,
            },
        },
        "file_uris": ["gs://terrafrom-test/test.csv"],
        "archive_uris": ["gs://terraform-test/test.csv"],
        "sql_script": "show databases",
    },
    project="my-project-name")
package main
import (
	"fmt"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/compute"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataplex"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		// VPC network
		_default, err := compute.NewNetwork(ctx, "default", &compute.NetworkArgs{
			Name:                  pulumi.String("tf-test-workstation-cluster_56730"),
			AutoCreateSubnetworks: pulumi.Bool(true),
		})
		if err != nil {
			return err
		}
		project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
		if err != nil {
			return err
		}
		exampleSpark, err := dataplex.NewLake(ctx, "example_spark", &dataplex.LakeArgs{
			Name:     pulumi.String("tf-test-lake_95154"),
			Location: pulumi.String("us-central1"),
			Project:  pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		_, err = dataplex.NewTask(ctx, "example_spark", &dataplex.TaskArgs{
			TaskId:   pulumi.String("tf-test-task_64336"),
			Location: pulumi.String("us-central1"),
			Lake:     exampleSpark.Name,
			TriggerSpec: &dataplex.TaskTriggerSpecArgs{
				Type: pulumi.String("ON_DEMAND"),
			},
			Description: pulumi.String("task-spark-terraform"),
			ExecutionSpec: &dataplex.TaskExecutionSpecArgs{
				ServiceAccount: pulumi.Sprintf("%v-compute@developer.gserviceaccount.com", project.Number),
				Args: pulumi.StringMap{
					"TASK_ARGS": pulumi.String("--output_location,gs://spark-job/task-result, --output_format, json"),
				},
			},
			Spark: &dataplex.TaskSparkArgs{
				InfrastructureSpec: &dataplex.TaskSparkInfrastructureSpecArgs{
					Batch: &dataplex.TaskSparkInfrastructureSpecBatchArgs{
						ExecutorsCount:    pulumi.Int(2),
						MaxExecutorsCount: pulumi.Int(100),
					},
					ContainerImage: &dataplex.TaskSparkInfrastructureSpecContainerImageArgs{
						Image: pulumi.String("test-image"),
						JavaJars: pulumi.StringArray{
							pulumi.String("test-java-jars.jar"),
						},
						PythonPackages: pulumi.StringArray{
							pulumi.String("gs://bucket-name/my/path/to/lib.tar.gz"),
						},
						Properties: pulumi.StringMap{
							"name":  pulumi.String("wrench"),
							"mass":  pulumi.String("1.3kg"),
							"count": pulumi.String("3"),
						},
					},
					VpcNetwork: &dataplex.TaskSparkInfrastructureSpecVpcNetworkArgs{
						NetworkTags: pulumi.StringArray{
							pulumi.String("test-network-tag"),
						},
						SubNetwork: _default.ID(),
					},
				},
				FileUris: pulumi.StringArray{
					pulumi.String("gs://terrafrom-test/test.csv"),
				},
				ArchiveUris: pulumi.StringArray{
					pulumi.String("gs://terraform-test/test.csv"),
				},
				SqlScript: pulumi.String("show databases"),
			},
			Project: pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() => 
{
    // VPC network
    var @default = new Gcp.Compute.Network("default", new()
    {
        Name = "tf-test-workstation-cluster_56730",
        AutoCreateSubnetworks = true,
    });
    var project = Gcp.Organizations.GetProject.Invoke();
    var exampleSpark = new Gcp.DataPlex.Lake("example_spark", new()
    {
        Name = "tf-test-lake_95154",
        Location = "us-central1",
        Project = "my-project-name",
    });
    var exampleSparkTask = new Gcp.DataPlex.Task("example_spark", new()
    {
        TaskId = "tf-test-task_64336",
        Location = "us-central1",
        Lake = exampleSpark.Name,
        TriggerSpec = new Gcp.DataPlex.Inputs.TaskTriggerSpecArgs
        {
            Type = "ON_DEMAND",
        },
        Description = "task-spark-terraform",
        ExecutionSpec = new Gcp.DataPlex.Inputs.TaskExecutionSpecArgs
        {
            ServiceAccount = $"{project.Apply(getProjectResult => getProjectResult.Number)}-compute@developer.gserviceaccount.com",
            Args = 
            {
                { "TASK_ARGS", "--output_location,gs://spark-job/task-result, --output_format, json" },
            },
        },
        Spark = new Gcp.DataPlex.Inputs.TaskSparkArgs
        {
            InfrastructureSpec = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecArgs
            {
                Batch = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecBatchArgs
                {
                    ExecutorsCount = 2,
                    MaxExecutorsCount = 100,
                },
                ContainerImage = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecContainerImageArgs
                {
                    Image = "test-image",
                    JavaJars = new[]
                    {
                        "test-java-jars.jar",
                    },
                    PythonPackages = new[]
                    {
                        "gs://bucket-name/my/path/to/lib.tar.gz",
                    },
                    Properties = 
                    {
                        { "name", "wrench" },
                        { "mass", "1.3kg" },
                        { "count", "3" },
                    },
                },
                VpcNetwork = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecVpcNetworkArgs
                {
                    NetworkTags = new[]
                    {
                        "test-network-tag",
                    },
                    SubNetwork = @default.Id,
                },
            },
            FileUris = new[]
            {
                "gs://terrafrom-test/test.csv",
            },
            ArchiveUris = new[]
            {
                "gs://terraform-test/test.csv",
            },
            SqlScript = "show databases",
        },
        Project = "my-project-name",
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.compute.Network;
import com.pulumi.gcp.compute.NetworkArgs;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.dataplex.Lake;
import com.pulumi.gcp.dataplex.LakeArgs;
import com.pulumi.gcp.dataplex.Task;
import com.pulumi.gcp.dataplex.TaskArgs;
import com.pulumi.gcp.dataplex.inputs.TaskTriggerSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskExecutionSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkInfrastructureSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkInfrastructureSpecBatchArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkInfrastructureSpecContainerImageArgs;
import com.pulumi.gcp.dataplex.inputs.TaskSparkInfrastructureSpecVpcNetworkArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        // VPC network
        var default_ = new Network("default", NetworkArgs.builder()
            .name("tf-test-workstation-cluster_56730")
            .autoCreateSubnetworks(true)
            .build());
        final var project = OrganizationsFunctions.getProject();
        var exampleSpark = new Lake("exampleSpark", LakeArgs.builder()
            .name("tf-test-lake_95154")
            .location("us-central1")
            .project("my-project-name")
            .build());
        var exampleSparkTask = new Task("exampleSparkTask", TaskArgs.builder()
            .taskId("tf-test-task_64336")
            .location("us-central1")
            .lake(exampleSpark.name())
            .triggerSpec(TaskTriggerSpecArgs.builder()
                .type("ON_DEMAND")
                .build())
            .description("task-spark-terraform")
            .executionSpec(TaskExecutionSpecArgs.builder()
                .serviceAccount(String.format("%s-compute@developer.gserviceaccount.com", project.applyValue(getProjectResult -> getProjectResult.number())))
                .args(Map.of("TASK_ARGS", "--output_location,gs://spark-job/task-result, --output_format, json"))
                .build())
            .spark(TaskSparkArgs.builder()
                .infrastructureSpec(TaskSparkInfrastructureSpecArgs.builder()
                    .batch(TaskSparkInfrastructureSpecBatchArgs.builder()
                        .executorsCount(2)
                        .maxExecutorsCount(100)
                        .build())
                    .containerImage(TaskSparkInfrastructureSpecContainerImageArgs.builder()
                        .image("test-image")
                        .javaJars("test-java-jars.jar")
                        .pythonPackages("gs://bucket-name/my/path/to/lib.tar.gz")
                        .properties(Map.ofEntries(
                            Map.entry("name", "wrench"),
                            Map.entry("mass", "1.3kg"),
                            Map.entry("count", "3")
                        ))
                        .build())
                    .vpcNetwork(TaskSparkInfrastructureSpecVpcNetworkArgs.builder()
                        .networkTags("test-network-tag")
                        .subNetwork(default_.id())
                        .build())
                    .build())
                .fileUris("gs://terrafrom-test/test.csv")
                .archiveUris("gs://terraform-test/test.csv")
                .sqlScript("show databases")
                .build())
            .project("my-project-name")
            .build());
    }
}
resources:
  # VPC network
  default:
    type: gcp:compute:Network
    properties:
      name: tf-test-workstation-cluster_56730
      autoCreateSubnetworks: true
  exampleSpark:
    type: gcp:dataplex:Lake
    name: example_spark
    properties:
      name: tf-test-lake_95154
      location: us-central1
      project: my-project-name
  exampleSparkTask:
    type: gcp:dataplex:Task
    name: example_spark
    properties:
      taskId: tf-test-task_64336
      location: us-central1
      lake: ${exampleSpark.name}
      triggerSpec:
        type: ON_DEMAND
      description: task-spark-terraform
      executionSpec:
        serviceAccount: ${project.number}-compute@developer.gserviceaccount.com
        args:
          TASK_ARGS: --output_location,gs://spark-job/task-result, --output_format, json
      spark:
        infrastructureSpec:
          batch:
            executorsCount: 2
            maxExecutorsCount: 100
          containerImage:
            image: test-image
            javaJars:
              - test-java-jars.jar
            pythonPackages:
              - gs://bucket-name/my/path/to/lib.tar.gz
            properties:
              name: wrench
              mass: 1.3kg
              count: '3'
          vpcNetwork:
            networkTags:
              - test-network-tag
            subNetwork: ${default.id}
        fileUris:
          - gs://terrafrom-test/test.csv
        archiveUris:
          - gs://terraform-test/test.csv
        sqlScript: show databases
      project: my-project-name
variables:
  project:
    fn::invoke:
      function: gcp:organizations:getProject
      arguments: {}
Dataplex Task Notebook
import * as pulumi from "@pulumi/pulumi";
import * as gcp from "@pulumi/gcp";
// VPC network
const _default = new gcp.compute.Network("default", {
    name: "tf-test-workstation-cluster_34962",
    autoCreateSubnetworks: true,
});
const project = gcp.organizations.getProject({});
const exampleNotebook = new gcp.dataplex.Lake("example_notebook", {
    name: "tf-test-lake_74000",
    location: "us-central1",
    project: "my-project-name",
});
const exampleNotebookTask = new gcp.dataplex.Task("example_notebook", {
    taskId: "tf-test-task_75125",
    location: "us-central1",
    lake: exampleNotebook.name,
    triggerSpec: {
        type: "RECURRING",
        schedule: "1 * * * *",
    },
    executionSpec: {
        serviceAccount: project.then(project => `${project.number}-compute@developer.gserviceaccount.com`),
        args: {
            TASK_ARGS: "--output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json",
        },
    },
    notebook: {
        notebook: "gs://terraform-test/test-notebook.ipynb",
        infrastructureSpec: {
            batch: {
                executorsCount: 2,
                maxExecutorsCount: 100,
            },
            containerImage: {
                image: "test-image",
                javaJars: ["test-java-jars.jar"],
                pythonPackages: ["gs://bucket-name/my/path/to/lib.tar.gz"],
                properties: {
                    name: "wrench",
                    mass: "1.3kg",
                    count: "3",
                },
            },
            vpcNetwork: {
                networkTags: ["test-network-tag"],
                network: _default.id,
            },
        },
        fileUris: ["gs://terraform-test/test.csv"],
        archiveUris: ["gs://terraform-test/test.csv"],
    },
    project: "my-project-name",
});
import pulumi
import pulumi_gcp as gcp
# VPC network
default = gcp.compute.Network("default",
    name="tf-test-workstation-cluster_34962",
    auto_create_subnetworks=True)
project = gcp.organizations.get_project()
example_notebook = gcp.dataplex.Lake("example_notebook",
    name="tf-test-lake_74000",
    location="us-central1",
    project="my-project-name")
example_notebook_task = gcp.dataplex.Task("example_notebook",
    task_id="tf-test-task_75125",
    location="us-central1",
    lake=example_notebook.name,
    trigger_spec={
        "type": "RECURRING",
        "schedule": "1 * * * *",
    },
    execution_spec={
        "service_account": f"{project.number}-compute@developer.gserviceaccount.com",
        "args": {
            "TASK_ARGS": "--output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json",
        },
    },
    notebook={
        "notebook": "gs://terraform-test/test-notebook.ipynb",
        "infrastructure_spec": {
            "batch": {
                "executors_count": 2,
                "max_executors_count": 100,
            },
            "container_image": {
                "image": "test-image",
                "java_jars": ["test-java-jars.jar"],
                "python_packages": ["gs://bucket-name/my/path/to/lib.tar.gz"],
                "properties": {
                    "name": "wrench",
                    "mass": "1.3kg",
                    "count": "3",
                },
            },
            "vpc_network": {
                "network_tags": ["test-network-tag"],
                "network": default.id,
            },
        },
        "file_uris": ["gs://terraform-test/test.csv"],
        "archive_uris": ["gs://terraform-test/test.csv"],
    },
    project="my-project-name")
package main
import (
	"fmt"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/compute"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/dataplex"
	"github.com/pulumi/pulumi-gcp/sdk/v8/go/gcp/organizations"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)
func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		// VPC network
		_default, err := compute.NewNetwork(ctx, "default", &compute.NetworkArgs{
			Name:                  pulumi.String("tf-test-workstation-cluster_34962"),
			AutoCreateSubnetworks: pulumi.Bool(true),
		})
		if err != nil {
			return err
		}
		project, err := organizations.LookupProject(ctx, &organizations.LookupProjectArgs{}, nil)
		if err != nil {
			return err
		}
		exampleNotebook, err := dataplex.NewLake(ctx, "example_notebook", &dataplex.LakeArgs{
			Name:     pulumi.String("tf-test-lake_74000"),
			Location: pulumi.String("us-central1"),
			Project:  pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		_, err = dataplex.NewTask(ctx, "example_notebook", &dataplex.TaskArgs{
			TaskId:   pulumi.String("tf-test-task_75125"),
			Location: pulumi.String("us-central1"),
			Lake:     exampleNotebook.Name,
			TriggerSpec: &dataplex.TaskTriggerSpecArgs{
				Type:     pulumi.String("RECURRING"),
				Schedule: pulumi.String("1 * * * *"),
			},
			ExecutionSpec: &dataplex.TaskExecutionSpecArgs{
				ServiceAccount: pulumi.Sprintf("%v-compute@developer.gserviceaccount.com", project.Number),
				Args: pulumi.StringMap{
					"TASK_ARGS": pulumi.String("--output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json"),
				},
			},
			Notebook: &dataplex.TaskNotebookArgs{
				Notebook: pulumi.String("gs://terraform-test/test-notebook.ipynb"),
				InfrastructureSpec: &dataplex.TaskNotebookInfrastructureSpecArgs{
					Batch: &dataplex.TaskNotebookInfrastructureSpecBatchArgs{
						ExecutorsCount:    pulumi.Int(2),
						MaxExecutorsCount: pulumi.Int(100),
					},
					ContainerImage: &dataplex.TaskNotebookInfrastructureSpecContainerImageArgs{
						Image: pulumi.String("test-image"),
						JavaJars: pulumi.StringArray{
							pulumi.String("test-java-jars.jar"),
						},
						PythonPackages: pulumi.StringArray{
							pulumi.String("gs://bucket-name/my/path/to/lib.tar.gz"),
						},
						Properties: pulumi.StringMap{
							"name":  pulumi.String("wrench"),
							"mass":  pulumi.String("1.3kg"),
							"count": pulumi.String("3"),
						},
					},
					VpcNetwork: &dataplex.TaskNotebookInfrastructureSpecVpcNetworkArgs{
						NetworkTags: pulumi.StringArray{
							pulumi.String("test-network-tag"),
						},
						Network: _default.ID(),
					},
				},
				FileUris: pulumi.StringArray{
					pulumi.String("gs://terraform-test/test.csv"),
				},
				ArchiveUris: pulumi.StringArray{
					pulumi.String("gs://terraform-test/test.csv"),
				},
			},
			Project: pulumi.String("my-project-name"),
		})
		if err != nil {
			return err
		}
		return nil
	})
}
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Gcp = Pulumi.Gcp;
return await Deployment.RunAsync(() => 
{
    // VPC network
    var @default = new Gcp.Compute.Network("default", new()
    {
        Name = "tf-test-workstation-cluster_34962",
        AutoCreateSubnetworks = true,
    });
    var project = Gcp.Organizations.GetProject.Invoke();
    var exampleNotebook = new Gcp.DataPlex.Lake("example_notebook", new()
    {
        Name = "tf-test-lake_74000",
        Location = "us-central1",
        Project = "my-project-name",
    });
    var exampleNotebookTask = new Gcp.DataPlex.Task("example_notebook", new()
    {
        TaskId = "tf-test-task_75125",
        Location = "us-central1",
        Lake = exampleNotebook.Name,
        TriggerSpec = new Gcp.DataPlex.Inputs.TaskTriggerSpecArgs
        {
            Type = "RECURRING",
            Schedule = "1 * * * *",
        },
        ExecutionSpec = new Gcp.DataPlex.Inputs.TaskExecutionSpecArgs
        {
            ServiceAccount = $"{project.Apply(getProjectResult => getProjectResult.Number)}-compute@developer.gserviceaccount.com",
            Args = 
            {
                { "TASK_ARGS", "--output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json" },
            },
        },
        Notebook = new Gcp.DataPlex.Inputs.TaskNotebookArgs
        {
            Notebook = "gs://terraform-test/test-notebook.ipynb",
            InfrastructureSpec = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecArgs
            {
                Batch = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecBatchArgs
                {
                    ExecutorsCount = 2,
                    MaxExecutorsCount = 100,
                },
                ContainerImage = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecContainerImageArgs
                {
                    Image = "test-image",
                    JavaJars = new[]
                    {
                        "test-java-jars.jar",
                    },
                    PythonPackages = new[]
                    {
                        "gs://bucket-name/my/path/to/lib.tar.gz",
                    },
                    Properties = 
                    {
                        { "name", "wrench" },
                        { "mass", "1.3kg" },
                        { "count", "3" },
                    },
                },
                VpcNetwork = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecVpcNetworkArgs
                {
                    NetworkTags = new[]
                    {
                        "test-network-tag",
                    },
                    Network = @default.Id,
                },
            },
            FileUris = new[]
            {
                "gs://terraform-test/test.csv",
            },
            ArchiveUris = new[]
            {
                "gs://terraform-test/test.csv",
            },
        },
        Project = "my-project-name",
    });
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.gcp.compute.Network;
import com.pulumi.gcp.compute.NetworkArgs;
import com.pulumi.gcp.organizations.OrganizationsFunctions;
import com.pulumi.gcp.organizations.inputs.GetProjectArgs;
import com.pulumi.gcp.dataplex.Lake;
import com.pulumi.gcp.dataplex.LakeArgs;
import com.pulumi.gcp.dataplex.Task;
import com.pulumi.gcp.dataplex.TaskArgs;
import com.pulumi.gcp.dataplex.inputs.TaskTriggerSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskExecutionSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskNotebookArgs;
import com.pulumi.gcp.dataplex.inputs.TaskNotebookInfrastructureSpecArgs;
import com.pulumi.gcp.dataplex.inputs.TaskNotebookInfrastructureSpecBatchArgs;
import com.pulumi.gcp.dataplex.inputs.TaskNotebookInfrastructureSpecContainerImageArgs;
import com.pulumi.gcp.dataplex.inputs.TaskNotebookInfrastructureSpecVpcNetworkArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        // VPC network
        var default_ = new Network("default", NetworkArgs.builder()
            .name("tf-test-workstation-cluster_34962")
            .autoCreateSubnetworks(true)
            .build());
        final var project = OrganizationsFunctions.getProject();
        var exampleNotebook = new Lake("exampleNotebook", LakeArgs.builder()
            .name("tf-test-lake_74000")
            .location("us-central1")
            .project("my-project-name")
            .build());
        var exampleNotebookTask = new Task("exampleNotebookTask", TaskArgs.builder()
            .taskId("tf-test-task_75125")
            .location("us-central1")
            .lake(exampleNotebook.name())
            .triggerSpec(TaskTriggerSpecArgs.builder()
                .type("RECURRING")
                .schedule("1 * * * *")
                .build())
            .executionSpec(TaskExecutionSpecArgs.builder()
                .serviceAccount(String.format("%s-compute@developer.gserviceaccount.com", project.applyValue(getProjectResult -> getProjectResult.number())))
                .args(Map.of("TASK_ARGS", "--output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json"))
                .build())
            .notebook(TaskNotebookArgs.builder()
                .notebook("gs://terraform-test/test-notebook.ipynb")
                .infrastructureSpec(TaskNotebookInfrastructureSpecArgs.builder()
                    .batch(TaskNotebookInfrastructureSpecBatchArgs.builder()
                        .executorsCount(2)
                        .maxExecutorsCount(100)
                        .build())
                    .containerImage(TaskNotebookInfrastructureSpecContainerImageArgs.builder()
                        .image("test-image")
                        .javaJars("test-java-jars.jar")
                        .pythonPackages("gs://bucket-name/my/path/to/lib.tar.gz")
                        .properties(Map.ofEntries(
                            Map.entry("name", "wrench"),
                            Map.entry("mass", "1.3kg"),
                            Map.entry("count", "3")
                        ))
                        .build())
                    .vpcNetwork(TaskNotebookInfrastructureSpecVpcNetworkArgs.builder()
                        .networkTags("test-network-tag")
                        .network(default_.id())
                        .build())
                    .build())
                .fileUris("gs://terraform-test/test.csv")
                .archiveUris("gs://terraform-test/test.csv")
                .build())
            .project("my-project-name")
            .build());
    }
}
resources:
  # VPC network
  default:
    type: gcp:compute:Network
    properties:
      name: tf-test-workstation-cluster_34962
      autoCreateSubnetworks: true
  exampleNotebook:
    type: gcp:dataplex:Lake
    name: example_notebook
    properties:
      name: tf-test-lake_74000
      location: us-central1
      project: my-project-name
  exampleNotebookTask:
    type: gcp:dataplex:Task
    name: example_notebook
    properties:
      taskId: tf-test-task_75125
      location: us-central1
      lake: ${exampleNotebook.name}
      triggerSpec:
        type: RECURRING
        schedule: 1 * * * *
      executionSpec:
        serviceAccount: ${project.number}-compute@developer.gserviceaccount.com
        args:
          TASK_ARGS: --output_location,gs://spark-job-jars-anrajitha/task-result, --output_format, json
      notebook:
        notebook: gs://terraform-test/test-notebook.ipynb
        infrastructureSpec:
          batch:
            executorsCount: 2
            maxExecutorsCount: 100
          containerImage:
            image: test-image
            javaJars:
              - test-java-jars.jar
            pythonPackages:
              - gs://bucket-name/my/path/to/lib.tar.gz
            properties:
              name: wrench
              mass: 1.3kg
              count: '3'
          vpcNetwork:
            networkTags:
              - test-network-tag
            network: ${default.id}
        fileUris:
          - gs://terraform-test/test.csv
        archiveUris:
          - gs://terraform-test/test.csv
      project: my-project-name
variables:
  project:
    fn::invoke:
      function: gcp:organizations:getProject
      arguments: {}
Create Task Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new Task(name: string, args: TaskArgs, opts?: CustomResourceOptions);@overload
def Task(resource_name: str,
         args: TaskArgs,
         opts: Optional[ResourceOptions] = None)
@overload
def Task(resource_name: str,
         opts: Optional[ResourceOptions] = None,
         execution_spec: Optional[TaskExecutionSpecArgs] = None,
         trigger_spec: Optional[TaskTriggerSpecArgs] = None,
         description: Optional[str] = None,
         display_name: Optional[str] = None,
         labels: Optional[Mapping[str, str]] = None,
         lake: Optional[str] = None,
         location: Optional[str] = None,
         notebook: Optional[TaskNotebookArgs] = None,
         project: Optional[str] = None,
         spark: Optional[TaskSparkArgs] = None,
         task_id: Optional[str] = None)func NewTask(ctx *Context, name string, args TaskArgs, opts ...ResourceOption) (*Task, error)public Task(string name, TaskArgs args, CustomResourceOptions? opts = null)type: gcp:dataplex:Task
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args TaskArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args TaskArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args TaskArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args TaskArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args TaskArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var taskResource = new Gcp.DataPlex.Task("taskResource", new()
{
    ExecutionSpec = new Gcp.DataPlex.Inputs.TaskExecutionSpecArgs
    {
        ServiceAccount = "string",
        Args = 
        {
            { "string", "string" },
        },
        KmsKey = "string",
        MaxJobExecutionLifetime = "string",
        Project = "string",
    },
    TriggerSpec = new Gcp.DataPlex.Inputs.TaskTriggerSpecArgs
    {
        Type = "string",
        Disabled = false,
        MaxRetries = 0,
        Schedule = "string",
        StartTime = "string",
    },
    Description = "string",
    DisplayName = "string",
    Labels = 
    {
        { "string", "string" },
    },
    Lake = "string",
    Location = "string",
    Notebook = new Gcp.DataPlex.Inputs.TaskNotebookArgs
    {
        Notebook = "string",
        ArchiveUris = new[]
        {
            "string",
        },
        FileUris = new[]
        {
            "string",
        },
        InfrastructureSpec = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecArgs
        {
            Batch = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecBatchArgs
            {
                ExecutorsCount = 0,
                MaxExecutorsCount = 0,
            },
            ContainerImage = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecContainerImageArgs
            {
                Image = "string",
                JavaJars = new[]
                {
                    "string",
                },
                Properties = 
                {
                    { "string", "string" },
                },
                PythonPackages = new[]
                {
                    "string",
                },
            },
            VpcNetwork = new Gcp.DataPlex.Inputs.TaskNotebookInfrastructureSpecVpcNetworkArgs
            {
                Network = "string",
                NetworkTags = new[]
                {
                    "string",
                },
                SubNetwork = "string",
            },
        },
    },
    Project = "string",
    Spark = new Gcp.DataPlex.Inputs.TaskSparkArgs
    {
        ArchiveUris = new[]
        {
            "string",
        },
        FileUris = new[]
        {
            "string",
        },
        InfrastructureSpec = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecArgs
        {
            Batch = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecBatchArgs
            {
                ExecutorsCount = 0,
                MaxExecutorsCount = 0,
            },
            ContainerImage = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecContainerImageArgs
            {
                Image = "string",
                JavaJars = new[]
                {
                    "string",
                },
                Properties = 
                {
                    { "string", "string" },
                },
                PythonPackages = new[]
                {
                    "string",
                },
            },
            VpcNetwork = new Gcp.DataPlex.Inputs.TaskSparkInfrastructureSpecVpcNetworkArgs
            {
                Network = "string",
                NetworkTags = new[]
                {
                    "string",
                },
                SubNetwork = "string",
            },
        },
        MainClass = "string",
        MainJarFileUri = "string",
        PythonScriptFile = "string",
        SqlScript = "string",
        SqlScriptFile = "string",
    },
    TaskId = "string",
});
example, err := dataplex.NewTask(ctx, "taskResource", &dataplex.TaskArgs{
	ExecutionSpec: &dataplex.TaskExecutionSpecArgs{
		ServiceAccount: pulumi.String("string"),
		Args: pulumi.StringMap{
			"string": pulumi.String("string"),
		},
		KmsKey:                  pulumi.String("string"),
		MaxJobExecutionLifetime: pulumi.String("string"),
		Project:                 pulumi.String("string"),
	},
	TriggerSpec: &dataplex.TaskTriggerSpecArgs{
		Type:       pulumi.String("string"),
		Disabled:   pulumi.Bool(false),
		MaxRetries: pulumi.Int(0),
		Schedule:   pulumi.String("string"),
		StartTime:  pulumi.String("string"),
	},
	Description: pulumi.String("string"),
	DisplayName: pulumi.String("string"),
	Labels: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
	Lake:     pulumi.String("string"),
	Location: pulumi.String("string"),
	Notebook: &dataplex.TaskNotebookArgs{
		Notebook: pulumi.String("string"),
		ArchiveUris: pulumi.StringArray{
			pulumi.String("string"),
		},
		FileUris: pulumi.StringArray{
			pulumi.String("string"),
		},
		InfrastructureSpec: &dataplex.TaskNotebookInfrastructureSpecArgs{
			Batch: &dataplex.TaskNotebookInfrastructureSpecBatchArgs{
				ExecutorsCount:    pulumi.Int(0),
				MaxExecutorsCount: pulumi.Int(0),
			},
			ContainerImage: &dataplex.TaskNotebookInfrastructureSpecContainerImageArgs{
				Image: pulumi.String("string"),
				JavaJars: pulumi.StringArray{
					pulumi.String("string"),
				},
				Properties: pulumi.StringMap{
					"string": pulumi.String("string"),
				},
				PythonPackages: pulumi.StringArray{
					pulumi.String("string"),
				},
			},
			VpcNetwork: &dataplex.TaskNotebookInfrastructureSpecVpcNetworkArgs{
				Network: pulumi.String("string"),
				NetworkTags: pulumi.StringArray{
					pulumi.String("string"),
				},
				SubNetwork: pulumi.String("string"),
			},
		},
	},
	Project: pulumi.String("string"),
	Spark: &dataplex.TaskSparkArgs{
		ArchiveUris: pulumi.StringArray{
			pulumi.String("string"),
		},
		FileUris: pulumi.StringArray{
			pulumi.String("string"),
		},
		InfrastructureSpec: &dataplex.TaskSparkInfrastructureSpecArgs{
			Batch: &dataplex.TaskSparkInfrastructureSpecBatchArgs{
				ExecutorsCount:    pulumi.Int(0),
				MaxExecutorsCount: pulumi.Int(0),
			},
			ContainerImage: &dataplex.TaskSparkInfrastructureSpecContainerImageArgs{
				Image: pulumi.String("string"),
				JavaJars: pulumi.StringArray{
					pulumi.String("string"),
				},
				Properties: pulumi.StringMap{
					"string": pulumi.String("string"),
				},
				PythonPackages: pulumi.StringArray{
					pulumi.String("string"),
				},
			},
			VpcNetwork: &dataplex.TaskSparkInfrastructureSpecVpcNetworkArgs{
				Network: pulumi.String("string"),
				NetworkTags: pulumi.StringArray{
					pulumi.String("string"),
				},
				SubNetwork: pulumi.String("string"),
			},
		},
		MainClass:        pulumi.String("string"),
		MainJarFileUri:   pulumi.String("string"),
		PythonScriptFile: pulumi.String("string"),
		SqlScript:        pulumi.String("string"),
		SqlScriptFile:    pulumi.String("string"),
	},
	TaskId: pulumi.String("string"),
})
var taskResource = new Task("taskResource", TaskArgs.builder()
    .executionSpec(TaskExecutionSpecArgs.builder()
        .serviceAccount("string")
        .args(Map.of("string", "string"))
        .kmsKey("string")
        .maxJobExecutionLifetime("string")
        .project("string")
        .build())
    .triggerSpec(TaskTriggerSpecArgs.builder()
        .type("string")
        .disabled(false)
        .maxRetries(0)
        .schedule("string")
        .startTime("string")
        .build())
    .description("string")
    .displayName("string")
    .labels(Map.of("string", "string"))
    .lake("string")
    .location("string")
    .notebook(TaskNotebookArgs.builder()
        .notebook("string")
        .archiveUris("string")
        .fileUris("string")
        .infrastructureSpec(TaskNotebookInfrastructureSpecArgs.builder()
            .batch(TaskNotebookInfrastructureSpecBatchArgs.builder()
                .executorsCount(0)
                .maxExecutorsCount(0)
                .build())
            .containerImage(TaskNotebookInfrastructureSpecContainerImageArgs.builder()
                .image("string")
                .javaJars("string")
                .properties(Map.of("string", "string"))
                .pythonPackages("string")
                .build())
            .vpcNetwork(TaskNotebookInfrastructureSpecVpcNetworkArgs.builder()
                .network("string")
                .networkTags("string")
                .subNetwork("string")
                .build())
            .build())
        .build())
    .project("string")
    .spark(TaskSparkArgs.builder()
        .archiveUris("string")
        .fileUris("string")
        .infrastructureSpec(TaskSparkInfrastructureSpecArgs.builder()
            .batch(TaskSparkInfrastructureSpecBatchArgs.builder()
                .executorsCount(0)
                .maxExecutorsCount(0)
                .build())
            .containerImage(TaskSparkInfrastructureSpecContainerImageArgs.builder()
                .image("string")
                .javaJars("string")
                .properties(Map.of("string", "string"))
                .pythonPackages("string")
                .build())
            .vpcNetwork(TaskSparkInfrastructureSpecVpcNetworkArgs.builder()
                .network("string")
                .networkTags("string")
                .subNetwork("string")
                .build())
            .build())
        .mainClass("string")
        .mainJarFileUri("string")
        .pythonScriptFile("string")
        .sqlScript("string")
        .sqlScriptFile("string")
        .build())
    .taskId("string")
    .build());
task_resource = gcp.dataplex.Task("taskResource",
    execution_spec={
        "service_account": "string",
        "args": {
            "string": "string",
        },
        "kms_key": "string",
        "max_job_execution_lifetime": "string",
        "project": "string",
    },
    trigger_spec={
        "type": "string",
        "disabled": False,
        "max_retries": 0,
        "schedule": "string",
        "start_time": "string",
    },
    description="string",
    display_name="string",
    labels={
        "string": "string",
    },
    lake="string",
    location="string",
    notebook={
        "notebook": "string",
        "archive_uris": ["string"],
        "file_uris": ["string"],
        "infrastructure_spec": {
            "batch": {
                "executors_count": 0,
                "max_executors_count": 0,
            },
            "container_image": {
                "image": "string",
                "java_jars": ["string"],
                "properties": {
                    "string": "string",
                },
                "python_packages": ["string"],
            },
            "vpc_network": {
                "network": "string",
                "network_tags": ["string"],
                "sub_network": "string",
            },
        },
    },
    project="string",
    spark={
        "archive_uris": ["string"],
        "file_uris": ["string"],
        "infrastructure_spec": {
            "batch": {
                "executors_count": 0,
                "max_executors_count": 0,
            },
            "container_image": {
                "image": "string",
                "java_jars": ["string"],
                "properties": {
                    "string": "string",
                },
                "python_packages": ["string"],
            },
            "vpc_network": {
                "network": "string",
                "network_tags": ["string"],
                "sub_network": "string",
            },
        },
        "main_class": "string",
        "main_jar_file_uri": "string",
        "python_script_file": "string",
        "sql_script": "string",
        "sql_script_file": "string",
    },
    task_id="string")
const taskResource = new gcp.dataplex.Task("taskResource", {
    executionSpec: {
        serviceAccount: "string",
        args: {
            string: "string",
        },
        kmsKey: "string",
        maxJobExecutionLifetime: "string",
        project: "string",
    },
    triggerSpec: {
        type: "string",
        disabled: false,
        maxRetries: 0,
        schedule: "string",
        startTime: "string",
    },
    description: "string",
    displayName: "string",
    labels: {
        string: "string",
    },
    lake: "string",
    location: "string",
    notebook: {
        notebook: "string",
        archiveUris: ["string"],
        fileUris: ["string"],
        infrastructureSpec: {
            batch: {
                executorsCount: 0,
                maxExecutorsCount: 0,
            },
            containerImage: {
                image: "string",
                javaJars: ["string"],
                properties: {
                    string: "string",
                },
                pythonPackages: ["string"],
            },
            vpcNetwork: {
                network: "string",
                networkTags: ["string"],
                subNetwork: "string",
            },
        },
    },
    project: "string",
    spark: {
        archiveUris: ["string"],
        fileUris: ["string"],
        infrastructureSpec: {
            batch: {
                executorsCount: 0,
                maxExecutorsCount: 0,
            },
            containerImage: {
                image: "string",
                javaJars: ["string"],
                properties: {
                    string: "string",
                },
                pythonPackages: ["string"],
            },
            vpcNetwork: {
                network: "string",
                networkTags: ["string"],
                subNetwork: "string",
            },
        },
        mainClass: "string",
        mainJarFileUri: "string",
        pythonScriptFile: "string",
        sqlScript: "string",
        sqlScriptFile: "string",
    },
    taskId: "string",
});
type: gcp:dataplex:Task
properties:
    description: string
    displayName: string
    executionSpec:
        args:
            string: string
        kmsKey: string
        maxJobExecutionLifetime: string
        project: string
        serviceAccount: string
    labels:
        string: string
    lake: string
    location: string
    notebook:
        archiveUris:
            - string
        fileUris:
            - string
        infrastructureSpec:
            batch:
                executorsCount: 0
                maxExecutorsCount: 0
            containerImage:
                image: string
                javaJars:
                    - string
                properties:
                    string: string
                pythonPackages:
                    - string
            vpcNetwork:
                network: string
                networkTags:
                    - string
                subNetwork: string
        notebook: string
    project: string
    spark:
        archiveUris:
            - string
        fileUris:
            - string
        infrastructureSpec:
            batch:
                executorsCount: 0
                maxExecutorsCount: 0
            containerImage:
                image: string
                javaJars:
                    - string
                properties:
                    string: string
                pythonPackages:
                    - string
            vpcNetwork:
                network: string
                networkTags:
                    - string
                subNetwork: string
        mainClass: string
        mainJarFileUri: string
        pythonScriptFile: string
        sqlScript: string
        sqlScriptFile: string
    taskId: string
    triggerSpec:
        disabled: false
        maxRetries: 0
        schedule: string
        startTime: string
        type: string
Task Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The Task resource accepts the following input properties:
- ExecutionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- TriggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- Description string
- User-provided description of the task.
- DisplayName string
- User friendly display name.
- Labels Dictionary<string, string>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- Lake string
- The lake in which the task will be created in.
- Location string
- The location in which the task will be created in.
- Notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- Project string
- Spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- TaskId string
- The task Id of the task.
- ExecutionSpec TaskExecution Spec Args 
- Configuration for the cluster Structure is documented below.
- TriggerSpec TaskTrigger Spec Args 
- Configuration for the cluster Structure is documented below.
- Description string
- User-provided description of the task.
- DisplayName string
- User friendly display name.
- Labels map[string]string
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- Lake string
- The lake in which the task will be created in.
- Location string
- The location in which the task will be created in.
- Notebook
TaskNotebook Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- Project string
- Spark
TaskSpark Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- TaskId string
- The task Id of the task.
- executionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- triggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- description String
- User-provided description of the task.
- displayName String
- User friendly display name.
- labels Map<String,String>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake String
- The lake in which the task will be created in.
- location String
- The location in which the task will be created in.
- notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project String
- spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- taskId String
- The task Id of the task.
- executionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- triggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- description string
- User-provided description of the task.
- displayName string
- User friendly display name.
- labels {[key: string]: string}
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake string
- The lake in which the task will be created in.
- location string
- The location in which the task will be created in.
- notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project string
- spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- taskId string
- The task Id of the task.
- execution_spec TaskExecution Spec Args 
- Configuration for the cluster Structure is documented below.
- trigger_spec TaskTrigger Spec Args 
- Configuration for the cluster Structure is documented below.
- description str
- User-provided description of the task.
- display_name str
- User friendly display name.
- labels Mapping[str, str]
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake str
- The lake in which the task will be created in.
- location str
- The location in which the task will be created in.
- notebook
TaskNotebook Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project str
- spark
TaskSpark Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- task_id str
- The task Id of the task.
- executionSpec Property Map
- Configuration for the cluster Structure is documented below.
- triggerSpec Property Map
- Configuration for the cluster Structure is documented below.
- description String
- User-provided description of the task.
- displayName String
- User friendly display name.
- labels Map<String>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake String
- The lake in which the task will be created in.
- location String
- The location in which the task will be created in.
- notebook Property Map
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project String
- spark Property Map
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- taskId String
- The task Id of the task.
Outputs
All input properties are implicitly available as output properties. Additionally, the Task resource produces the following output properties:
- CreateTime string
- The time when the task was created.
- EffectiveLabels Dictionary<string, string>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- ExecutionStatuses List<TaskExecution Status> 
- Configuration for the cluster Structure is documented below.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- PulumiLabels Dictionary<string, string>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- State string
- (Output) Execution state for the job.
- Uid string
- (Output) System generated globally unique ID for the job.
- UpdateTime string
- (Output) Last update time of the status.
- CreateTime string
- The time when the task was created.
- EffectiveLabels map[string]string
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- ExecutionStatuses []TaskExecution Status 
- Configuration for the cluster Structure is documented below.
- Id string
- The provider-assigned unique ID for this managed resource.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- PulumiLabels map[string]string
- The combination of labels configured directly on the resource and default labels configured on the provider.
- State string
- (Output) Execution state for the job.
- Uid string
- (Output) System generated globally unique ID for the job.
- UpdateTime string
- (Output) Last update time of the status.
- createTime String
- The time when the task was created.
- effectiveLabels Map<String,String>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionStatuses List<TaskExecution Status> 
- Configuration for the cluster Structure is documented below.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- pulumiLabels Map<String,String>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- state String
- (Output) Execution state for the job.
- uid String
- (Output) System generated globally unique ID for the job.
- updateTime String
- (Output) Last update time of the status.
- createTime string
- The time when the task was created.
- effectiveLabels {[key: string]: string}
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionStatuses TaskExecution Status[] 
- Configuration for the cluster Structure is documented below.
- id string
- The provider-assigned unique ID for this managed resource.
- name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- pulumiLabels {[key: string]: string}
- The combination of labels configured directly on the resource and default labels configured on the provider.
- state string
- (Output) Execution state for the job.
- uid string
- (Output) System generated globally unique ID for the job.
- updateTime string
- (Output) Last update time of the status.
- create_time str
- The time when the task was created.
- effective_labels Mapping[str, str]
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- execution_statuses Sequence[TaskExecution Status] 
- Configuration for the cluster Structure is documented below.
- id str
- The provider-assigned unique ID for this managed resource.
- name str
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- pulumi_labels Mapping[str, str]
- The combination of labels configured directly on the resource and default labels configured on the provider.
- state str
- (Output) Execution state for the job.
- uid str
- (Output) System generated globally unique ID for the job.
- update_time str
- (Output) Last update time of the status.
- createTime String
- The time when the task was created.
- effectiveLabels Map<String>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionStatuses List<Property Map>
- Configuration for the cluster Structure is documented below.
- id String
- The provider-assigned unique ID for this managed resource.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- pulumiLabels Map<String>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- state String
- (Output) Execution state for the job.
- uid String
- (Output) System generated globally unique ID for the job.
- updateTime String
- (Output) Last update time of the status.
Look up Existing Task Resource
Get an existing Task resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: TaskState, opts?: CustomResourceOptions): Task@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        create_time: Optional[str] = None,
        description: Optional[str] = None,
        display_name: Optional[str] = None,
        effective_labels: Optional[Mapping[str, str]] = None,
        execution_spec: Optional[TaskExecutionSpecArgs] = None,
        execution_statuses: Optional[Sequence[TaskExecutionStatusArgs]] = None,
        labels: Optional[Mapping[str, str]] = None,
        lake: Optional[str] = None,
        location: Optional[str] = None,
        name: Optional[str] = None,
        notebook: Optional[TaskNotebookArgs] = None,
        project: Optional[str] = None,
        pulumi_labels: Optional[Mapping[str, str]] = None,
        spark: Optional[TaskSparkArgs] = None,
        state: Optional[str] = None,
        task_id: Optional[str] = None,
        trigger_spec: Optional[TaskTriggerSpecArgs] = None,
        uid: Optional[str] = None,
        update_time: Optional[str] = None) -> Taskfunc GetTask(ctx *Context, name string, id IDInput, state *TaskState, opts ...ResourceOption) (*Task, error)public static Task Get(string name, Input<string> id, TaskState? state, CustomResourceOptions? opts = null)public static Task get(String name, Output<String> id, TaskState state, CustomResourceOptions options)resources:  _:    type: gcp:dataplex:Task    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- CreateTime string
- The time when the task was created.
- Description string
- User-provided description of the task.
- DisplayName string
- User friendly display name.
- EffectiveLabels Dictionary<string, string>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- ExecutionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- ExecutionStatuses List<TaskExecution Status> 
- Configuration for the cluster Structure is documented below.
- Labels Dictionary<string, string>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- Lake string
- The lake in which the task will be created in.
- Location string
- The location in which the task will be created in.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- Notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- Project string
- PulumiLabels Dictionary<string, string>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- Spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- State string
- (Output) Execution state for the job.
- TaskId string
- The task Id of the task.
- TriggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- Uid string
- (Output) System generated globally unique ID for the job.
- UpdateTime string
- (Output) Last update time of the status.
- CreateTime string
- The time when the task was created.
- Description string
- User-provided description of the task.
- DisplayName string
- User friendly display name.
- EffectiveLabels map[string]string
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- ExecutionSpec TaskExecution Spec Args 
- Configuration for the cluster Structure is documented below.
- ExecutionStatuses []TaskExecution Status Args 
- Configuration for the cluster Structure is documented below.
- Labels map[string]string
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- Lake string
- The lake in which the task will be created in.
- Location string
- The location in which the task will be created in.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- Notebook
TaskNotebook Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- Project string
- PulumiLabels map[string]string
- The combination of labels configured directly on the resource and default labels configured on the provider.
- Spark
TaskSpark Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- State string
- (Output) Execution state for the job.
- TaskId string
- The task Id of the task.
- TriggerSpec TaskTrigger Spec Args 
- Configuration for the cluster Structure is documented below.
- Uid string
- (Output) System generated globally unique ID for the job.
- UpdateTime string
- (Output) Last update time of the status.
- createTime String
- The time when the task was created.
- description String
- User-provided description of the task.
- displayName String
- User friendly display name.
- effectiveLabels Map<String,String>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- executionStatuses List<TaskExecution Status> 
- Configuration for the cluster Structure is documented below.
- labels Map<String,String>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake String
- The lake in which the task will be created in.
- location String
- The location in which the task will be created in.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project String
- pulumiLabels Map<String,String>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- state String
- (Output) Execution state for the job.
- taskId String
- The task Id of the task.
- triggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- uid String
- (Output) System generated globally unique ID for the job.
- updateTime String
- (Output) Last update time of the status.
- createTime string
- The time when the task was created.
- description string
- User-provided description of the task.
- displayName string
- User friendly display name.
- effectiveLabels {[key: string]: string}
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionSpec TaskExecution Spec 
- Configuration for the cluster Structure is documented below.
- executionStatuses TaskExecution Status[] 
- Configuration for the cluster Structure is documented below.
- labels {[key: string]: string}
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake string
- The lake in which the task will be created in.
- location string
- The location in which the task will be created in.
- name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- notebook
TaskNotebook 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project string
- pulumiLabels {[key: string]: string}
- The combination of labels configured directly on the resource and default labels configured on the provider.
- spark
TaskSpark 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- state string
- (Output) Execution state for the job.
- taskId string
- The task Id of the task.
- triggerSpec TaskTrigger Spec 
- Configuration for the cluster Structure is documented below.
- uid string
- (Output) System generated globally unique ID for the job.
- updateTime string
- (Output) Last update time of the status.
- create_time str
- The time when the task was created.
- description str
- User-provided description of the task.
- display_name str
- User friendly display name.
- effective_labels Mapping[str, str]
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- execution_spec TaskExecution Spec Args 
- Configuration for the cluster Structure is documented below.
- execution_statuses Sequence[TaskExecution Status Args] 
- Configuration for the cluster Structure is documented below.
- labels Mapping[str, str]
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake str
- The lake in which the task will be created in.
- location str
- The location in which the task will be created in.
- name str
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- notebook
TaskNotebook Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project str
- pulumi_labels Mapping[str, str]
- The combination of labels configured directly on the resource and default labels configured on the provider.
- spark
TaskSpark Args 
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- state str
- (Output) Execution state for the job.
- task_id str
- The task Id of the task.
- trigger_spec TaskTrigger Spec Args 
- Configuration for the cluster Structure is documented below.
- uid str
- (Output) System generated globally unique ID for the job.
- update_time str
- (Output) Last update time of the status.
- createTime String
- The time when the task was created.
- description String
- User-provided description of the task.
- displayName String
- User friendly display name.
- effectiveLabels Map<String>
- All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Pulumi, other clients and services.
- executionSpec Property Map
- Configuration for the cluster Structure is documented below.
- executionStatuses List<Property Map>
- Configuration for the cluster Structure is documented below.
- labels Map<String>
- User-defined labels for the task. Note: This field is non-authoritative, and will only manage the labels present in your configuration. Please refer to the field 'effective_labels' for all of the labels present on the resource.
- lake String
- The lake in which the task will be created in.
- location String
- The location in which the task will be created in.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- notebook Property Map
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- project String
- pulumiLabels Map<String>
- The combination of labels configured directly on the resource and default labels configured on the provider.
- spark Property Map
- A service with manual scaling runs continuously, allowing you to perform complex initialization and rely on the state of its memory over time.
- state String
- (Output) Execution state for the job.
- taskId String
- The task Id of the task.
- triggerSpec Property Map
- Configuration for the cluster Structure is documented below.
- uid String
- (Output) System generated globally unique ID for the job.
- updateTime String
- (Output) Last update time of the status.
Supporting Types
TaskExecutionSpec, TaskExecutionSpecArgs      
- ServiceAccount string
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- Args Dictionary<string, string>
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- KmsKey string
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- MaxJob stringExecution Lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- Project string
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
- ServiceAccount string
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- Args map[string]string
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- KmsKey string
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- MaxJob stringExecution Lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- Project string
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
- serviceAccount String
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- args Map<String,String>
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- kmsKey String
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- maxJob StringExecution Lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- project String
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
- serviceAccount string
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- args {[key: string]: string}
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- kmsKey string
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- maxJob stringExecution Lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- project string
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
- service_account str
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- args Mapping[str, str]
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- kms_key str
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- max_job_ strexecution_ lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- project str
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
- serviceAccount String
- Service account to use to execute a task. If not provided, the default Compute service account for the project is used.
- args Map<String>
- The arguments to pass to the task. The args can use placeholders of the format ${placeholder} as part of key/value string. These will be interpolated before passing the args to the driver. Currently supported placeholders: - ${taskId} - ${job_time} To pass positional args, set the key as TASK_ARGS. The value should be a comma-separated string of all the positional arguments. To use a delimiter other than comma, refer to https://cloud.google.com/sdk/gcloud/reference/topic/escaping. In case of other keys being present in the args, then TASK_ARGS will be passed as the last argument. An object containing a list of 'key': value pairs. Example: { 'name': 'wrench', 'mass': '1.3kg', 'count': '3' }.
- kmsKey String
- The Cloud KMS key to use for encryption, of the form: projects/{project_number}/locations/{locationId}/keyRings/{key-ring-name}/cryptoKeys/{key-name}.
- maxJob StringExecution Lifetime 
- The maximum duration after which the job execution is expired. A duration in seconds with up to nine fractional digits, ending with 's'. Example: '3.5s'.
- project String
- The ID of the project in which the resource belongs. If it is not provided, the provider project is used.
TaskExecutionStatus, TaskExecutionStatusArgs      
- LatestJobs List<TaskExecution Status Latest Job> 
- (Output) latest job execution. Structure is documented below.
- UpdateTime string
- (Output) Last update time of the status.
- LatestJobs []TaskExecution Status Latest Job 
- (Output) latest job execution. Structure is documented below.
- UpdateTime string
- (Output) Last update time of the status.
- latestJobs List<TaskExecution Status Latest Job> 
- (Output) latest job execution. Structure is documented below.
- updateTime String
- (Output) Last update time of the status.
- latestJobs TaskExecution Status Latest Job[] 
- (Output) latest job execution. Structure is documented below.
- updateTime string
- (Output) Last update time of the status.
- latest_jobs Sequence[TaskExecution Status Latest Job] 
- (Output) latest job execution. Structure is documented below.
- update_time str
- (Output) Last update time of the status.
- latestJobs List<Property Map>
- (Output) latest job execution. Structure is documented below.
- updateTime String
- (Output) Last update time of the status.
TaskExecutionStatusLatestJob, TaskExecutionStatusLatestJobArgs          
- EndTime string
- (Output) The time when the job ended.
- Message string
- (Output) Additional information about the current state.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- RetryCount int
- (Output) The number of times the job has been retried (excluding the initial attempt).
- Service string
- (Output) The underlying service running a job.
- ServiceJob string
- (Output) The full resource name for the job run under a particular service.
- StartTime string
- (Output) The time when the job was started.
- State string
- (Output) Execution state for the job.
- Uid string
- (Output) System generated globally unique ID for the job.
- EndTime string
- (Output) The time when the job ended.
- Message string
- (Output) Additional information about the current state.
- Name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- RetryCount int
- (Output) The number of times the job has been retried (excluding the initial attempt).
- Service string
- (Output) The underlying service running a job.
- ServiceJob string
- (Output) The full resource name for the job run under a particular service.
- StartTime string
- (Output) The time when the job was started.
- State string
- (Output) Execution state for the job.
- Uid string
- (Output) System generated globally unique ID for the job.
- endTime String
- (Output) The time when the job ended.
- message String
- (Output) Additional information about the current state.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- retryCount Integer
- (Output) The number of times the job has been retried (excluding the initial attempt).
- service String
- (Output) The underlying service running a job.
- serviceJob String
- (Output) The full resource name for the job run under a particular service.
- startTime String
- (Output) The time when the job was started.
- state String
- (Output) Execution state for the job.
- uid String
- (Output) System generated globally unique ID for the job.
- endTime string
- (Output) The time when the job ended.
- message string
- (Output) Additional information about the current state.
- name string
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- retryCount number
- (Output) The number of times the job has been retried (excluding the initial attempt).
- service string
- (Output) The underlying service running a job.
- serviceJob string
- (Output) The full resource name for the job run under a particular service.
- startTime string
- (Output) The time when the job was started.
- state string
- (Output) Execution state for the job.
- uid string
- (Output) System generated globally unique ID for the job.
- end_time str
- (Output) The time when the job ended.
- message str
- (Output) Additional information about the current state.
- name str
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- retry_count int
- (Output) The number of times the job has been retried (excluding the initial attempt).
- service str
- (Output) The underlying service running a job.
- service_job str
- (Output) The full resource name for the job run under a particular service.
- start_time str
- (Output) The time when the job was started.
- state str
- (Output) Execution state for the job.
- uid str
- (Output) System generated globally unique ID for the job.
- endTime String
- (Output) The time when the job ended.
- message String
- (Output) Additional information about the current state.
- name String
- (Output) The relative resource name of the job, of the form: projects/{project_number}/locations/{locationId}/lakes/{lakeId}/tasks/{taskId}/jobs/{jobId}.
- retryCount Number
- (Output) The number of times the job has been retried (excluding the initial attempt).
- service String
- (Output) The underlying service running a job.
- serviceJob String
- (Output) The full resource name for the job run under a particular service.
- startTime String
- (Output) The time when the job was started.
- state String
- (Output) Execution state for the job.
- uid String
- (Output) System generated globally unique ID for the job.
TaskNotebook, TaskNotebookArgs    
- Notebook string
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- ArchiveUris List<string>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- FileUris List<string>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- InfrastructureSpec TaskNotebook Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- Notebook string
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- ArchiveUris []string
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- FileUris []string
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- InfrastructureSpec TaskNotebook Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- notebook String
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- archiveUris List<String>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris List<String>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec TaskNotebook Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- notebook string
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- archiveUris string[]
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris string[]
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec TaskNotebook Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- notebook str
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- archive_uris Sequence[str]
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- file_uris Sequence[str]
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructure_spec TaskNotebook Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- notebook String
- Path to input notebook. This can be the Cloud Storage URI of the notebook file or the path to a Notebook Content. The execution args are accessible as environment variables (TASK_key=value).
- archiveUris List<String>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris List<String>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec Property Map
- Infrastructure specification for the execution. Structure is documented below.
TaskNotebookInfrastructureSpec, TaskNotebookInfrastructureSpecArgs        
- Batch
TaskNotebook Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- ContainerImage TaskNotebook Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- VpcNetwork TaskNotebook Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- Batch
TaskNotebook Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- ContainerImage TaskNotebook Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- VpcNetwork TaskNotebook Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskNotebook Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage TaskNotebook Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork TaskNotebook Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskNotebook Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage TaskNotebook Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork TaskNotebook Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskNotebook Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- container_image TaskNotebook Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpc_network TaskNotebook Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch Property Map
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage Property Map
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork Property Map
- Vpc network. Structure is documented below.
TaskNotebookInfrastructureSpecBatch, TaskNotebookInfrastructureSpecBatchArgs          
- ExecutorsCount int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- MaxExecutors intCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- ExecutorsCount int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- MaxExecutors intCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount Integer
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors IntegerCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount number
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors numberCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executors_count int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- max_executors_ intcount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount Number
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors NumberCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
TaskNotebookInfrastructureSpecContainerImage, TaskNotebookInfrastructureSpecContainerImageArgs            
- Image string
- Container image to use.
- JavaJars List<string>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- Properties Dictionary<string, string>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- PythonPackages List<string>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- Image string
- Container image to use.
- JavaJars []string
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- Properties map[string]string
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- PythonPackages []string
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image String
- Container image to use.
- javaJars List<String>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Map<String,String>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages List<String>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image string
- Container image to use.
- javaJars string[]
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties {[key: string]: string}
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages string[]
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image str
- Container image to use.
- java_jars Sequence[str]
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Mapping[str, str]
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- python_packages Sequence[str]
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image String
- Container image to use.
- javaJars List<String>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Map<String>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages List<String>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
TaskNotebookInfrastructureSpecVpcNetwork, TaskNotebookInfrastructureSpecVpcNetworkArgs            
- Network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<string>
- List of network tags to apply to the job.
- SubNetwork string
- The Cloud VPC sub-network in which the job is run.
- Network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- []string
- List of network tags to apply to the job.
- SubNetwork string
- The Cloud VPC sub-network in which the job is run.
- network String
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<String>
- List of network tags to apply to the job.
- subNetwork String
- The Cloud VPC sub-network in which the job is run.
- network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- string[]
- List of network tags to apply to the job.
- subNetwork string
- The Cloud VPC sub-network in which the job is run.
- network str
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- Sequence[str]
- List of network tags to apply to the job.
- sub_network str
- The Cloud VPC sub-network in which the job is run.
- network String
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<String>
- List of network tags to apply to the job.
- subNetwork String
- The Cloud VPC sub-network in which the job is run.
TaskSpark, TaskSparkArgs    
- ArchiveUris List<string>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- FileUris List<string>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- InfrastructureSpec TaskSpark Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- MainClass string
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- MainJar stringFile Uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- PythonScript stringFile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- SqlScript string
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- SqlScript stringFile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
- ArchiveUris []string
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- FileUris []string
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- InfrastructureSpec TaskSpark Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- MainClass string
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- MainJar stringFile Uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- PythonScript stringFile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- SqlScript string
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- SqlScript stringFile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
- archiveUris List<String>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris List<String>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec TaskSpark Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- mainClass String
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- mainJar StringFile Uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- pythonScript StringFile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- sqlScript String
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- sqlScript StringFile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
- archiveUris string[]
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris string[]
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec TaskSpark Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- mainClass string
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- mainJar stringFile Uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- pythonScript stringFile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- sqlScript string
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- sqlScript stringFile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
- archive_uris Sequence[str]
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- file_uris Sequence[str]
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructure_spec TaskSpark Infrastructure Spec 
- Infrastructure specification for the execution. Structure is documented below.
- main_class str
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- main_jar_ strfile_ uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- python_script_ strfile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- sql_script str
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- sql_script_ strfile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
- archiveUris List<String>
- Cloud Storage URIs of archives to be extracted into the working directory of each executor. Supported file types: .jar, .tar, .tar.gz, .tgz, and .zip.
- fileUris List<String>
- Cloud Storage URIs of files to be placed in the working directory of each executor.
- infrastructureSpec Property Map
- Infrastructure specification for the execution. Structure is documented below.
- mainClass String
- The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jar_file_uris. The execution args are passed in as a sequence of named process arguments (--key=value).
- mainJar StringFile Uri 
- The Cloud Storage URI of the jar file that contains the main class. The execution args are passed in as a sequence of named process arguments (--key=value).
- pythonScript StringFile 
- The Gcloud Storage URI of the main Python file to use as the driver. Must be a .py file. The execution args are passed in as a sequence of named process arguments (--key=value).
- sqlScript String
- The query text. The execution args are used to declare a set of script variables (set key='value';).
- sqlScript StringFile 
- A reference to a query file. This can be the Cloud Storage URI of the query file or it can the path to a SqlScript Content. The execution args are used to declare a set of script variables (set key='value';).
TaskSparkInfrastructureSpec, TaskSparkInfrastructureSpecArgs        
- Batch
TaskSpark Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- ContainerImage TaskSpark Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- VpcNetwork TaskSpark Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- Batch
TaskSpark Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- ContainerImage TaskSpark Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- VpcNetwork TaskSpark Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskSpark Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage TaskSpark Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork TaskSpark Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskSpark Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage TaskSpark Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork TaskSpark Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch
TaskSpark Infrastructure Spec Batch 
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- container_image TaskSpark Infrastructure Spec Container Image 
- Container Image Runtime Configuration. Structure is documented below.
- vpc_network TaskSpark Infrastructure Spec Vpc Network 
- Vpc network. Structure is documented below.
- batch Property Map
- Compute resources needed for a Task when using Dataproc Serverless. Structure is documented below.
- containerImage Property Map
- Container Image Runtime Configuration. Structure is documented below.
- vpcNetwork Property Map
- Vpc network. Structure is documented below.
TaskSparkInfrastructureSpecBatch, TaskSparkInfrastructureSpecBatchArgs          
- ExecutorsCount int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- MaxExecutors intCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- ExecutorsCount int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- MaxExecutors intCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount Integer
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors IntegerCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount number
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors numberCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executors_count int
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- max_executors_ intcount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
- executorsCount Number
- Total number of job executors. Executor Count should be between 2 and 100. [Default=2]
- maxExecutors NumberCount 
- Max configurable executors. If maxExecutorsCount > executorsCount, then auto-scaling is enabled. Max Executor Count should be between 2 and 1000. [Default=1000]
TaskSparkInfrastructureSpecContainerImage, TaskSparkInfrastructureSpecContainerImageArgs            
- Image string
- Container image to use.
- JavaJars List<string>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- Properties Dictionary<string, string>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- PythonPackages List<string>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- Image string
- Container image to use.
- JavaJars []string
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- Properties map[string]string
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- PythonPackages []string
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image String
- Container image to use.
- javaJars List<String>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Map<String,String>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages List<String>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image string
- Container image to use.
- javaJars string[]
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties {[key: string]: string}
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages string[]
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image str
- Container image to use.
- java_jars Sequence[str]
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Mapping[str, str]
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- python_packages Sequence[str]
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
- image String
- Container image to use.
- javaJars List<String>
- A list of Java JARS to add to the classpath. Valid input includes Cloud Storage URIs to Jar binaries. For example, gs://bucket-name/my/path/to/file.jar
- properties Map<String>
- Override to common configuration of open source components installed on the Dataproc cluster. The properties to set on daemon config files. Property keys are specified in prefix:property format, for example core:hadoop.tmp.dir. For more information, see Cluster properties.
- pythonPackages List<String>
- A list of python packages to be installed. Valid formats include Cloud Storage URI to a PIP installable library. For example, gs://bucket-name/my/path/to/lib.tar.gz
TaskSparkInfrastructureSpecVpcNetwork, TaskSparkInfrastructureSpecVpcNetworkArgs            
- Network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<string>
- List of network tags to apply to the job.
- SubNetwork string
- The Cloud VPC sub-network in which the job is run.
- Network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- []string
- List of network tags to apply to the job.
- SubNetwork string
- The Cloud VPC sub-network in which the job is run.
- network String
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<String>
- List of network tags to apply to the job.
- subNetwork String
- The Cloud VPC sub-network in which the job is run.
- network string
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- string[]
- List of network tags to apply to the job.
- subNetwork string
- The Cloud VPC sub-network in which the job is run.
- network str
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- Sequence[str]
- List of network tags to apply to the job.
- sub_network str
- The Cloud VPC sub-network in which the job is run.
- network String
- The Cloud VPC network in which the job is run. By default, the Cloud VPC network named Default within the project is used.
- List<String>
- List of network tags to apply to the job.
- subNetwork String
- The Cloud VPC sub-network in which the job is run.
TaskTriggerSpec, TaskTriggerSpecArgs      
- Type string
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- Disabled bool
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- MaxRetries int
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- Schedule string
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- StartTime string
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
- Type string
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- Disabled bool
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- MaxRetries int
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- Schedule string
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- StartTime string
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
- type String
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- disabled Boolean
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- maxRetries Integer
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- schedule String
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- startTime String
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
- type string
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- disabled boolean
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- maxRetries number
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- schedule string
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- startTime string
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
- type str
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- disabled bool
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- max_retries int
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- schedule str
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- start_time str
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
- type String
- Trigger type of the user-specified Task
Possible values are: ON_DEMAND,RECURRING.
- disabled Boolean
- Prevent the task from executing. This does not cancel already running tasks. It is intended to temporarily disable RECURRING tasks.
- maxRetries Number
- Number of retry attempts before aborting. Set to zero to never attempt to retry a failed task.
- schedule String
- Cron schedule (https://en.wikipedia.org/wiki/Cron) for running tasks periodically. To explicitly set a timezone to the cron tab, apply a prefix in the cron tab: 'CRON_TZ=${IANA_TIME_ZONE}' or 'TZ=${IANA_TIME_ZONE}'. The ${IANA_TIME_ZONE} may only be a valid string from IANA time zone database. For example, CRON_TZ=America/New_York 1 * * * *, or TZ=America/New_York 1 * * * *. This field is required for RECURRING tasks.
- startTime String
- The first run of the task will be after this time. If not specified, the task will run shortly after being submitted if ON_DEMAND and based on the schedule if RECURRING.
Import
Task can be imported using any of these accepted formats:
- projects/{{project}}/locations/{{location}}/lakes/{{lake}}/tasks/{{task_id}}
- {{project}}/{{location}}/{{lake}}/{{task_id}}
- {{location}}/{{lake}}/{{task_id}}
When using the pulumi import command, Task can be imported using one of the formats above. For example:
$ pulumi import gcp:dataplex/task:Task default projects/{{project}}/locations/{{location}}/lakes/{{lake}}/tasks/{{task_id}}
$ pulumi import gcp:dataplex/task:Task default {{project}}/{{location}}/{{lake}}/{{task_id}}
$ pulumi import gcp:dataplex/task:Task default {{location}}/{{lake}}/{{task_id}}
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- Google Cloud (GCP) Classic pulumi/pulumi-gcp
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the google-betaTerraform Provider.